Antimicrobial Effect of an Alcoholic Extract of an Ethnobotanical Mixture Against Clinical Isolates
PDF

Keywords

Antimicrobial activity
Hawan samagri
Clinical isolates
Multidrug-resistant bacteria
Antibiotic resistance

How to Cite

Shrimali, A., & Tomar , J. (2023). Antimicrobial Effect of an Alcoholic Extract of an Ethnobotanical Mixture Against Clinical Isolates. Interdisciplinary Journal of Yagya Research, 6(1), 10-17. https://doi.org/10.36018/ijyr.v6i1.106

Abstract

Infectious diseases, exacerbated by antibiotic-resistant bacteria, continue to pose a significant global burden. Traditional Medicine offers interesting possibilities for combating drug resistance, with various plants producing secondary metabolites that exhibit biological activities. This study aims to evaluate the antimicrobial effects of an alcoholic extract of an ethnobotanical mixture (Hawan Samagri) against clinical isolates. The mixture consists of six herbs commonly used in the Hawan ritual in India i.e. Giloy, Nagarmotha, Palash, Bakuchi, Bel, Kapoor kachari} and Chid. The study tested its extract against 11 clinical bacterial isolates using the microbroth dilution method. The results demonstrated that the alcoholic extract exhibited antimicrobial activity against all tested bacterial isolates, indicating potential broad-spectrum activity. The study also revealed varying levels of resistance among the isolates: Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa were most resistant, while Branhamella catarrhalis and Proteus vulgaris were relatively medium resistant, and the remaining five bacteria, i.e. Escherichia coli, Salmonella enterica, Coagulase-positive staphylococci, Citrobacter freundii and Coagulase-negative staphylococci, were relatively least resistant. Although the study provides valuable insights into the antimicrobial potential of the ethnobotanical mixture, further research is required to determine the specific concentrations, active compounds, and mechanisms of action along with their efficacy and optimal dosage. Nevertheless, these findings contribute to the use of indigenous resources for combating antimicrobial resistance and suggest the potential of incorporating such herbal mixtures into the daily practices of Hawan as a preventive measure.

https://doi.org/10.36018/ijyr.v6i1.106
PDF

References

Aminov RI. A brief history of the antibiotic era: lessons learned and challenges for the future. Front Microbiol. 2010;1:134. https://doi.org/10.3389/fmicb.2010.00134

Ahmad A, Ghosh A, Schal C, Zurek L. Insects in confined swine operations carry a large antibiotic-resistant and potentially virulent enterococcal community. BMC Microbiol. 2011;11(1):23. https://doi.org/10.1186/1471-2180-11-23

Silbergeld, E. K., Graham, J., and Price, L. B. (2008). Industrial food animal production, antimicrobial resistance, and human health. Annual review of public health, 29, 151–169. https://doi.org/10.1146/annurev.publhealth.29.020907.

Richet HM, Mohammed J, McDonald LC, Jarvis WR. Building communication networks: international network for the study and prevention of emerging antimicrobial resistance. Emerg Infect Dis. 2001;7:319e22. https://doi.org/10.3201/eid0702.010235

Haslam E. Natural polyphenols (vegetable tannins) as drugs: possible modes of action. J Nat Prod. 1996;59(2):205e15. https://doi.org/10.1021/np960040+

Beceiro A, Tom as M, Bou G. Antimicrobial resistance and virulence: a successful or deleterious association in the bacterial world? Clin Microbiol Rev. 2013;26:185.

https://doi.org/10.1128/CMR.00059-12

Rastogi V, Tomar J, Patni T, Vijay C, Sharma P. Anti tubercular minimum inhibitory concentration (MIC) and chemical characterization of ethnobotanical mixture used in the treatment of tuberculosis. Indian J Microbiol Res. 2019;6(1):50-6.

Joshi RR, Raghuvanshi M, Pandya P. Yagyopathy versus oral and iv drug administration: evaluation for pulmonary tuberculosis using compartment modeling. Journal of Biological Systems. 2006 Sep;14(03):463-89.

Wiegand I, Hilpert K, Hancock RE. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc. 2008;3(2):163-175. https://doi.org/10.1038/nprot.2007.521

Palomino JC, Martin A, Camacho M, Guerra H, Swings J, Portaels F. Resazurin microtiter assay plate: simple and inexpensive method for detection of drug resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2002;46(8):2720-2722. https://doi.org/10.1128/AAC.46.8.2720-2722.2002

Mahesh B, Satish S. Antimicrobial activity of some important medicinal plants against plant and human pathogens. World J Agric Sci. 2008;4:839-843.

Vashist H, Jindal A. Antimicrobial activities of medicinal plants - Review. Int J Res Pharm Biomed Sci. 2012;3:222-230.

Agarwal S, Ramamurthy PH, Fernandes B, Rath A, Sidhu P. Assessment of antimicrobial activity of different concentrations of Tinospora cordifolia against Streptococcus mutans: An in vitro study. Dent Res J (Isfahan). 2019;16(1):24-28. https://doi.org/10.4103/1735-3327.249556

Jeyachandran R, Xavier TF, Anand SP. Antibacterial activity of stem extracts of Tinospora cordifolia (Willd) Hook. f and Thomson. Anc Sci Life. 2003;23(1):40-43.

Nath H, Khataniar A, Bania KK, Mukerjee N, Al-Hussain SA, Zaki ME, Rajkhowa S. Nano-functionalization and evaluation of antimicrobial activity of Tinospora cordifolia against the TolB protein of Pseudomonas aeruginosa - An antibacterial and computational study. Front Microbiol. 2023;14:1138106. https://doi.org/10.3389/fmicb.2023.1138106

Kumar DV, Geethanjali B, Avinash KO, et al. Tinospora cordifolia: the antimicrobial property of the leaves of amruthaballi. J Bacteriol Mycol Open Access. 2017;5(5):363-371. https://doi.org/10.15406/jbmoa.2017.05.00147

Shanthi V, Nelson R. Anitbacterial activity of Tinospora cordifolia (Willd) Hook. F. Thoms on urinary tract pathogens. Int J Curr Microbiol App Sci. 2013;2(6):190-194.

Mishra MP, Rath S, Swain SS, Ghosh G, Das D, Padhy RN. In vitro antibacterial activity of crude extracts of 9 selected medicinal plants against UTI causing MDR bacteria. J King Saud Univ Sci. 2017;29(1):84-95. https://doi.org/10.1016/j.jksus.2015.05.007

Akanksha K, Tripathi S, Neha M, Ranu P, Neetu M. Formulation of Herbal Tea and in Vitro Evaluation of Antibacterial Activity Against Drug-Resistant Uropathogens. J Adv Appl Sci Res. 2022;4(4):33-41. https://doi.org/10.46947/joaasr442022449

Karzan K, Shnawa B, Gorony S. Antimicrobial activity of Cyperus rotundus Linn. extracts and phytochemical screening. Eurasian J Sci Eng. 2017;312:82.

Daswani PG, Brijesh S, Tetali P, Birdi TJ. Studies on the activity of Cyperus rotundus Linn. tubers against infectious diarrhea. Indian J Pharmacol. 2011;43(3):340-344. https://doi.org/10.4103/0253-7613.81502

Dadook M, Mehrabian S, Irian S. Antimicrobial effect of Cyperus rotundus on multiple drug-resistant Pseudomonas aeruginosa strains. J Med Bacteriol. 2016;5(1-2):15-20.

Kabbashi AS, Mohammed SE, Almagboul AZ, Ahmed IF. Antimicrobial activity and cytotoxicity of ethanolic extract of Cyperus rotundus L. Am J Pharm Pharm Sci. 2015;2(1):1-3.

Vadivel SA, Thrisha M, Praveenkuma M, Jagadeesan S, Agash E, Jeeva S, Kumar PD. In-vitro study of anti-bacterial activity and phytochemical investigation of Cyperus rotundus. J Pharm Sci Res. 2022;14(1):684-685.

Suresh S, Ilakiya R, Kalaiyan G, Thambidurai S, Kannan P, Prabu KM, Suresh N, Jothilakshmi R, Kumar SK, Kandasamy M. Green synthesis of copper oxide nanostructures using Cynodon dactylon and Cyperus rotundus grass extracts for antibacterial applications. Ceram Int. 2020;46(8):12525-12537. https://doi.org/10.1016/j.ceramint.2020.02.015

Al-Snafi AE. A review on Cyperus rotundus: A potential medicinal plant. IOSR J Pharm. 2016;6(7):32-48. https://doi.org/10.9790/3013-06723248

Zhang S, Li P, Wei Z, Cheng Y, Liu J, Yang Y, Wang Y, Mu Z. Cyperus (Cyperus esculentus L.): a review of its compositions, medical efficacy, antibacterial activity and allelopathic potentials. Plants. 2022;11(9):1127. https://doi.org/10.3390/plants11091127

Kilani-Jaziri S, Bhouri W, Skandrani I, Limem I, Chekir-Ghedira L, Ghedira K. Phytochemical, antimicrobial, antioxidant, and antigenotoxic potentials of Cyperus rotundus extracts. S Afr J Bot. 2011;77(3):767-776. https://doi.org/10.1016/j.sajb.2011.03.015

Kilani S, Abdelwahed A, Ammar RB, Hayder N, Ghedira K, Chraief I, Hammami M, Chekir-Ghedira L. Chemical composition, antibacterial and antimutagenic activities of essential oil from (Tunisian) Cyperus rotundus. J Essent Oil Res. 2005;17(6):695-700. https://doi.org/10.1080/10412905.2005.9699035

Sivapalan SR. Medicinal uses and pharmacological activities of Cyperus rotundus Linn: A review. Int J Sci Res Publ. 2013;3(5):1-8.

Sahu MC, Padhy RN. In vitro antibacterial potency of Butea monosperma Lam. against 12 clinically isolated multidrug-resistant bacteria. Asian Pac J Trop Dis. 2013;3(3):217-226. doi:10.1016/S2222-1808(13)60044-4. https://doi.org/10.1016/S2222-1808(13)60044-4

Lohitha P, Kiran VR, Babu KM, Nataraj K, Rani PA, Madhavi N, Chaitanya M, Divya N. Phytochemical screening and in vitro antimicrobial activity of Butea monosperma (L) bark ethanolic and aqueous extract. Int J Pharm Sci Res. 2010;1(10):150.

Chopra B, Dhingra AK, Dhar KL. Psoralea corylifolia L. (Buguchi)-folklore to modern evidence. Fitoterapia. 2013;90:44-56. https://doi.org/10.1016/j.fitote.2013.06.016

Borate A, Khambhapati A, Udgire M, Paul D, Mathur S. Preliminary phytochemical studies and evaluation of antibacterial activity of Psoralea corylifolia seed extract. Am J Phytomed Clin Ther. 2014.

Mj A, Singh TR, Patgiri BJ. Antimicrobial activity of different dosage forms of Bakuchi (Psoralea corylifolia Linn.) taila, an Ayurvedic formulation. Int J Ayurvedic Med. 2015;6(3):232-236. https://doi.org/10.47552/ijam.v6i3.637

Katsura H, Tsukiyama RI, Suzuki A, Kobayashi M. In vitro antimicrobial activities of bakuchiol against oral microorganisms. Antimicrob Agents Chemother. 2001;45(11):3009-3013. doi:10.1128/AAC.45.11.3009-3013.2001. https://doi.org/10.1128/AAC.45.11.3009-3013.2001

Bajracharya AM, Yami KD, Prasai T, Basnyat SR, Lekhak B. Screening of some medicinal plants used in Nepalese traditional medicine against enteric bacteria. Sci World. 2010;6(6):107-110. doi:10.3126/sw.v6i6.2644. https://doi.org/10.3126/sw.v6i6.2644

Sekar DK, Kumar G, Karthik L, Rao KB. A review on pharmacological and phytochemical properties of Aegle marmelos (L.) Corr. Serr. (Rutaceae). Asian J Plant Sci Res. 2011;1(2):8-17.

Nema R, Khare S. In vitro cytotoxic activity toward anticancer and antimicrobial of Azadirachta indica, Aegle marmelos, Ocimum sanctum and Withania somnifera extracts. Bioprocess Eng. 2020;4(2):40-46. https://doi.org/10.11648/j.be.20200402.11

Sathish R. In-vitro antioxidant and invivo anxiolytic activity of bioflavanoid [Doctoral dissertation, JKK Nattraja College of Pharmacy, Komarapalayam]. 2017.

Verma S, Sinha R, Singh V, Tanwar S, Godara M. Antibacterial activity of methanolic extract of the whole plant of Convolvulus pluricaulis. J Pharm Res. 2011;4(12):4450-4452.

Pancholi B, Gautam M. Antimicrobial and antioxidant potentials of callus cultures of Convolvulus microphyllus Sieb. ex Spreng. J Med Herbs. 2022 Apr 21;13(1):27-36.

Arora R, Mazumder A. Phytochemical screening and antimicrobial activity of rhizomes of Hedychium spicatum. Pharmacognosy Journal. 2017;9(6s).

https://doi.org/10.5530/pj.2017.6s.159

Prakash O, Chandra M, Punetha H, Pant AK, Rawat DS. Spiked Ginger Lily (Hedychium spp.) Oils. In Essential oils in food preservation, flavor, and safety 2016 Jan 1 (pp. 737-750). Academic Press. https://doi.org/10.1016/B978-0-12-416641-7.00084-5

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2023 Arushi Shrimali, Jyoti Tomar

Metrics

Metrics Loading ...